If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7b^2+31b-16=4
We move all terms to the left:
7b^2+31b-16-(4)=0
We add all the numbers together, and all the variables
7b^2+31b-20=0
a = 7; b = 31; c = -20;
Δ = b2-4ac
Δ = 312-4·7·(-20)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-39}{2*7}=\frac{-70}{14} =-5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+39}{2*7}=\frac{8}{14} =4/7 $
| 0.04(y-8)+0.20y=0.02y-1.2 | | x/4+3=17 | | 49=16+y | | -93-3x=5x+43 | | -7x/11=-11/14 | | 1/4x+4=4 | | 80=0,1*x+88 | | -2x+6x=14+x+3x+3x | | x-1/10x=1/20 | | X-6+9+2x-19=22 | | -3=7k | | x/3-x+4/5=5 | | (j−7)=4 | | 5/3x=-13.33 | | 2(j−7)=4 | | 9=(s/6) | | -2(j−7)=4 | | 3x+35=-37 | | -48=-4x-4(4+x) | | x-5=11.2 | | -19=-14+n | | 19y+29=162 | | 210=-7(7n+2)-7n | | X(x-3)=10*7 | | z−12/1=-4 | | 3+y/2=5 | | z−12-1=-4 | | 3(x)+6=9 | | (20−4a)=6−a | | 5y+3=-14 | | 5x+0.5=10.5 | | -6(6a-1)+7=229 |